[65] Y. Kurosawa, P. Khandelwal, D. Yoshikawa, and M. Snyder, “Single-step influenza

and dengue virus purification with mixed-mode CHT ceramic hydroxyapatite XT

media,” Bulletin 7115, BioRad Laboratories, Inc. 2018. https://www.bio-rad.com/

webroot/web/pdf/psd/literature/Bulletin_7115.pdf

[66] P. Fernandes, C. Peixoto, V. M. Santiago, E. J. Kremer, A. S. Coroadinha, and P. M.

Alves, “Bioprocess development for canine adenovirus type 2 vectors,” Gene Ther.,

vol. 20, no. 4, pp. 353–360, 2013.

[67] S. Shoaebargh et al., “Sterile filtration of oncolytic viruses: An analysis of effects of

membrane morphology on fouling and product recovery,” J. Memb. Sci., vol. 548,

no. November 2017, pp. 239–246, 2018.

[68] L. X. Yu et al., “Understanding pharmaceutical quality by design,” AAPS J., vol. 16,

no. 4, pp. 771–783, 2014.

[69] A. C. A. Roque et al., “Anything but conventional chromatography approaches in

bioseparation,” Proteomics, vol. 8, pp. 1–25, 2020.

[70] M. G. Moleirinho, R. J. S. Silva, P. M. Alves, M. J. T. Carrondo, and C.

Peixoto “Current challenges in biotherapeutic particles manufacturing,” Expert

Opin. Biol. Ther., pp. 1–15, 2020.

[71] A. E. Ashcroft, “Mass spectrometry-based studies of virus assembly,” Curr. Opin.

Virol., vol. 36, pp. 17–24, 2019.

[72] C. Uetrecht et al., “High-resolution mass spectrometry of viral assemblies:

Molecular composition and stability of dimorphic hepatitis B virus capsids,” Proc.

Natl. Acad. Sci. USA., vol. 105, no. 27, pp. 9216–9220, 2008.

[73] S. A. Nass et al., “Universal Method for the Purification of Recombinant AAV

Vectors of Differing Serotypes,” Mol. Ther. - Methods Clin. Dev., vol. 9, no. June,

pp. 33–46, 2018.

[74] S. A. Berkowitz and J. S. Philo, “Monitoring the homogeneity of adenovirus pre-

parations (a gene therapy delivery system) using analytical ultracentrifugation.,”

Anal. Biochem., vol. 362, no. 1, pp. 16–37, Mar. 2007.

[75] BioPhorum Group, “Improving the biomanufacturing facility lifecycle using a

standardized, modular design, and construction approach,” 2019.

[76] J. Markarian, “Flexible facilities for viral vector manufacturing,” BioPharm Int.,

vol. 33, no. 3, pp. 23–24, 2020.

[77] P. Walters, “Understanding the unique design and engineering needs for Gene

therapy production,” Pharma’s Almanac, 2018.

[78] P. Nestola, “Integrated Technologies to Accelerate Process Intensification for Viral

Vaccine Manufacturing,” Sartorius Stedim, no. White paper, 2020.

[79] P. Abrecht, H. Pressac, G. Boulais, A., and Permanne, “Adenovirus downstream

process intensification implementation of a membrane adsorber,” Bioprocess Int.,

vol. 17, no. 10, pp. 38–44, 2019.

[80] T. Weigel, T. Solomaier, S. Wehmeyer, A. Peuker, M. W. Wolff, and U. Reichl, “A

membrane-based purification process for cell culture-derived influenza A virus,”

J. Biotechnol., vol. 220, pp. 12–20, 2016.

[81] X. Gjoka, R. Gantier, and M. Schofield, “Platform for integrated continuous bio-

processing,” BioPharm Int., vol. 30, no. 7, p. 26, 2017.

[82] R. Patil and M. Zhao, Downstream Process Intensification of Virus Purification

Using Single-Use Membrane Chromatography, vol. 38. 2019.

[83] A. S. Rathore, N. Kateja, and D. Kumar, “Process integration and control in con-

tinuous bioprocessing,” Curr. Opin. Chem. Eng., vol. 22, pp. 18–25, 2018.

Downstream processing

199